3.1183 \(\int \sqrt {\cos (c+d x)} (A+B \sec (c+d x)+C \sec ^2(c+d x)) \, dx\)

Optimal. Leaf size=61 \[ \frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 C \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

[Out]

2*(A-C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*B*(cos(1/2*d
*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*C*sin(d*x+c)/d/cos(d*x+c)^(1/2
)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 61, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.161, Rules used = {4064, 3021, 2748, 2641, 2639} \[ \frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 C \sin (c+d x)}{d \sqrt {\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(2*(A - C)*EllipticE[(c + d*x)/2, 2])/d + (2*B*EllipticF[(c + d*x)/2, 2])/d + (2*C*Sin[c + d*x])/(d*Sqrt[Cos[c
 + d*x]])

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3021

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> -Simp[((A*b^2 - a*b*B + a^2*C)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m + 1))/(b*f*(m +
 1)*(a^2 - b^2)), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B + a*
C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e,
 f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 4064

Int[(cos[(e_.) + (f_.)*(x_)]*(b_.))^(m_)*((A_.) + (B_.)*sec[(e_.) + (f_.)*(x_)] + (C_.)*sec[(e_.) + (f_.)*(x_)
]^2), x_Symbol] :> Dist[b^2, Int[(b*Cos[e + f*x])^(m - 2)*(C + B*Cos[e + f*x] + A*Cos[e + f*x]^2), x], x] /; F
reeQ[{b, e, f, A, B, C, m}, x] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \sqrt {\cos (c+d x)} \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \, dx &=\int \frac {C+B \cos (c+d x)+A \cos ^2(c+d x)}{\cos ^{\frac {3}{2}}(c+d x)} \, dx\\ &=\frac {2 C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+2 \int \frac {\frac {B}{2}+\frac {1}{2} (A-C) \cos (c+d x)}{\sqrt {\cos (c+d x)}} \, dx\\ &=\frac {2 C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}+B \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx+(A-C) \int \sqrt {\cos (c+d x)} \, dx\\ &=\frac {2 (A-C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 B F\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {2 C \sin (c+d x)}{d \sqrt {\cos (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 6.11, size = 272, normalized size = 4.46 \[ \frac {\cos ^{\frac {3}{2}}(c+d x) \left (A+B \sec (c+d x)+C \sec ^2(c+d x)\right ) \left (-\frac {2 (A-C) \sec (c) \sin \left (\tan ^{-1}(\tan (c))+d x\right ) \, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2\left (d x+\tan ^{-1}(\tan (c))\right )\right )}{\sqrt {\sec ^2(c)} \sqrt {\sin ^2\left (\tan ^{-1}(\tan (c))+d x\right )}}-4 B \sin (c) \sqrt {\csc ^2(c)} \cos (c+d x) \sqrt {\cos ^2\left (d x-\tan ^{-1}(\cot (c))\right )} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )+\frac {\csc (c) \left (-2 \sqrt {\sec ^2(c)} (A \cos (2 c+d x)+(A-2 C) \cos (d x))+3 (A-C) \sec (c) \cos \left (c-\tan ^{-1}(\tan (c))-d x\right )+(A-C) \sec (c) \cos \left (c+\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt {\sec ^2(c)}}\right )}{d (A \cos (2 (c+d x))+A+2 B \cos (c+d x)+2 C)} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[Sqrt[Cos[c + d*x]]*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2),x]

[Out]

(Cos[c + d*x]^(3/2)*(A + B*Sec[c + d*x] + C*Sec[c + d*x]^2)*((Csc[c]*(3*(A - C)*Cos[c - d*x - ArcTan[Tan[c]]]*
Sec[c] + (A - C)*Cos[c + d*x + ArcTan[Tan[c]]]*Sec[c] - 2*((A - 2*C)*Cos[d*x] + A*Cos[2*c + d*x])*Sqrt[Sec[c]^
2]))/Sqrt[Sec[c]^2] - 4*B*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c]^2]*HypergeometricPFQ[{1/4
, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] - (2*(A - C)*HypergeometricPFQ[{-
1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sec[c]*Sin[d*x + ArcTan[Tan[c]]])/(Sqrt[Sec[c]^2]*Sqrt[Sin[d*x
 + ArcTan[Tan[c]]]^2])))/(d*(A + 2*C + 2*B*Cos[c + d*x] + A*Cos[2*(c + d*x)]))

________________________________________________________________________________________

fricas [F]  time = 0.58, size = 0, normalized size = 0.00 \[ {\rm integral}\left ({\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

maple [A]  time = 4.87, size = 195, normalized size = 3.20 \[ \frac {2 A \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 B \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticF \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-2 C \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, \EllipticE \left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+4 C \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}{\sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2),x)

[Out]

2*(A*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))-B*(si
n(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-C*(sin(1/2*d*
x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))+2*C*cos(1/2*d*x+1/2*c
)*sin(1/2*d*x+1/2*c)^2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (C \sec \left (d x + c\right )^{2} + B \sec \left (d x + c\right ) + A\right )} \sqrt {\cos \left (d x + c\right )}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)^2)*cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((C*sec(d*x + c)^2 + B*sec(d*x + c) + A)*sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

mupad [B]  time = 0.28, size = 76, normalized size = 1.25 \[ \frac {2\,A\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,B\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,C\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{d\,\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^(1/2)*(A + B/cos(c + d*x) + C/cos(c + d*x)^2),x)

[Out]

(2*A*ellipticE(c/2 + (d*x)/2, 2))/d + (2*B*ellipticF(c/2 + (d*x)/2, 2))/d + (2*C*sin(c + d*x)*hypergeom([-1/4,
 1/2], 3/4, cos(c + d*x)^2))/(d*cos(c + d*x)^(1/2)*(sin(c + d*x)^2)^(1/2))

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (A + B \sec {\left (c + d x \right )} + C \sec ^{2}{\left (c + d x \right )}\right ) \sqrt {\cos {\left (c + d x \right )}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((A+B*sec(d*x+c)+C*sec(d*x+c)**2)*cos(d*x+c)**(1/2),x)

[Out]

Integral((A + B*sec(c + d*x) + C*sec(c + d*x)**2)*sqrt(cos(c + d*x)), x)

________________________________________________________________________________________